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Symmetry in Extended Phase Space for Singular 
Lagrangian with Subsidiary Constraints 
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A generalization of the Noether theorem to a singular nonholonomic system in 
the canonical formalism is given and its inverse theorem is presented. Based on 
the canonical action integral, a generalization of the Poincar6-Cartan integral 
invariant of a singular nonholonomic system is obtained. It is shown that this 
invariant is equivalent to the canonical equations of a singular constrained 
system. Some confusions in the literature are corrected. An example is given. 

1. INTRODUCTION 

The connection between continuous symmetry and conservation laws 
is usually referred to as the Noether theorem. The classical Noether 
theorem and its generalization (Li, 1981, 1984, 1985; Li and Li, 1990) are 
based on examination of  the Lagrangian in configuration space and the 
corresponding transformation expressed in terms of Lagrange variables. 
For  a system with a regular Lagrangian and a finite number of  degrees of  
freedom, the invariance under the continuous transformation in terms of  
Hamiltonian variables was discussed by Djukic (1974). A system with a 
singular Lagrangian is subject to some inherent phase space constraint 
(Dirac, 1964; Sundermeyer, 1982) and is called a constrained Hamiltonian 
system. An example is a system in the gauge theories. Generalizations of  
the Noether theorem to a system with an ordinary singular Lagrangian and 
to a system with a singular higher-order Lagrangian in terms of  canonical 
variables were discussed (Li and Li, 1991; Li, 1991). 

The Poincar6-Cartan integral invariant plays a fundamental role in 
classical mechanics, hydromechanics, and field theories. The generalization 
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of this invariant for a singular Lagrangian (Benavent and Gomis, 1979; 
Dominici and Gomis, 1980) and some applications (Sugano and Kamo, 
1982; Sugano, 1982) have been given. The generalization of this invariant 
to a regular nonholonomic system was also given (Li and Li, 1990). 

Dynamical systems (for example, classical mechanics and the mechan- 
ics of continuous media) are always subject to some subsidiary constraints; 
for some models of field theories the field variables are not independent, 
but there are some subsidiary constraint conditions among the field vari- 
ables, such as the nonlinear a-model and other models in field theories 
(Durand and Mandel, 1982). Here the symmetry properties in a con- 
strained Hamiltonian system with subsidiary constraints (called a singular 
constrained system) are further investigated. For the sake of simplicity we 
consider a nonholonomic system with singular Lagrangian in classical 
mechanics. For extension to other singular constrained systems one can 
proceed in the same way (with possible modifications of some steps). 

The paper is organized as follows. In Section 2, the generalized first 
Noether theorem (GFNT) in canonical formalism for a nonholonomic 
system with singular Lagrangian is deduced. In Section 3, an inverse 
theorem of GFNT is given. In Section 4, based on the canonical action, the 
Poincart-Cartan invariant for singular Lagrangian with subsidiary nonlin- 
ear nonholonomic constraints is obtained. It is shown that this invariant is 
equivalent to the canonical equations of the singular constrained system, 
and some confusions in the literature are corrected. An example is given. 

2. GFNT IN CANONICAL FORMALISM FOR SINGULAR 
CONSTRAINED SYSTEM 

Consider a dynamical system with N degrees of freedom described by 
a singular Lagrangian L(t,  q, q) (q = [ql, q2 . . . . .  q~]). We introduce the 
canonical momenta p~ = ~L /~ l  ~ and Hamiltonian H = pi~) i -  L which may 
be formed by eliminating only qi (the summation is taken over repeated 
indices). Take a system with singular Lagrangian whose Hessian matrix 
(~2L/~ql aq j) is degenerate and suppose its rank to be N -  R. Then the 
defining equations for the canonical momenta become noninvertible, and 
from the first N -  R equations only N -  R velocities q~ can be solved as 
functions of t, q~, ~ ,  and p~ 

~l '=F( t ,q~ ,~ l~ ,p~)  (a = 1,2 . . . . .  R, t r = R + l  . . . . .  N) (1) 

Substituting the q~ in the last R defining equations for the canonical 
momenta yields R relations (primary constraints) between the canonical 
variables (p --- [Pt, P2 . . . . .  PN]): 

cp~( t ,q ,p )=O ( a = l , 2  . . . . .  R) (2) 
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It was pointed out that Dirac's conjecture is invalid (Li and Li, 1991; 
Li, 1991), and the equations of motion of this system are given by 
(Sunderrneyer, 1982) 

~H O~b. 
o i=  ~P/ ..~ ]../a --ap, (i = 1, 2 . . . .  , N) (3a) 

OH ~b. 
Pi . . . .  #" - -  (3b) Oq i Oq i 

where #a(t) are Lagrange multipliers. 
For a system whose motion is subject to subsidiary nonlinear nonholo- 

nomic constraints, 

Gs(t, q, 4) = 0 (s = l, 2 . . . . .  M < N) (4) 

The equation of motion of this system is given by (Mei, 1985) 

d 0L 0L =2s0Gs (i = 1, 2 . . . . .  N) (5) 
dt Oil i Oq i 0(t i 

where M(t) are Lagrange multipliers. 
Now we treat both subjects for systems that are described by a 

singular Lagrangian and, moreover, are submitted to some additional 
nonholonomic constraints. Let us suppose that we have taken into account 
the compatibility between the constraints arising from the singularity of the 
Lagrangian and the given nonholonomic constraints. For example, one can 
consider a simple case that one substitutes (1) into (4), which converts to 
the canonical constraints Gs(t, q, p) = 0 (see Section 5). From the variation 
of the Hamiltonian, one gets 

OL OL OL 
6H = p,6il' + il'6p, - ~ 6q' - - ~  60' = ~l'6Pi - ~ 6q' (6) 

The Hamiltonian of the system depends only on time t and canonical 
variables for regular and singular Lagrangians (Nesterenko, 1989), 

OH i OH 
6H=-~q~6q +~pi  6p, (7) 

Combining the expressions (6) and (7), one obtains 

./ 0 H \  q - - -~pl )6Pi - - (~qi  OH\  , + ~ q i ) f q  = 0  (8) 

Substituting (5) into (8), one has 

OH OH ~ OGs\ i 
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For the singular Lagrangian, from (2) it follows that 

~ 5qi +C~a 6pi=O (lO) 
aq t~pi 

Using the Lagrange multipliers pa(t) and combining the expressions (9) and 
(10), one obtains the equations of motion in the space of coordinates 
(t, q, (/, p) for the singular Lagrangian with additional constraints (4): 

dH t0~a 
4i=Tpi +Pa  Opi ( l la)  

(~H ~ OGs 
Pi  = - ~q~ - p ~ + x s ~,~i  ( 1  l b )  

Let us consider an infinitesimal continuous r-parameter transforma- 
tion of the time, generalized coordinates, and generalized momenta 

fp t - ~ i = t + 6 t = t + ~ ( t ' q ' P )  
qi(t) ~ ~(i) = q "(t) + Aq (t) = qi(t) + e .~ ( t ,  q, p) (12) 

;(t) ~fi~(i) =p,(t) + Api(t) = pi(t) + e~l~. (t, q, p) 

Suppose that the canonical Lagrangian Lp =p~gfl-H is gauge variant 
under the transformation (12), i.e., is invariant up to an exact differential 
term 

d dfl" 
(6 fO = 8o - ~ -  

where ~ (a = l, 2 , . . . ,  r) are parameters, if2" = ~ ( t ,  q, p). The variation of 
the canonical action 

Ip -~- L p  dt = [Pi(t' - H(t, q, p)] at (13) 
I l 

is given by 

Alp = Lp (t, gl, P) d r -  Lp (t, q, p) dt = ~ (~ f~) dt (14) 
1 J t l  I 

From (12) and (14) one has 

.i H'x ([ t~H\5 , d 5 , q --~pi)6P, - i + - ~ )  q + ~ ( P i  q + Lp A t - 6 ~ ) = 0  (15) 

where 3p; and 5q ~ are simultaneous variations of pt and q~, 

5q'=Aqg-dflAt,  @, = Ap~ - p ;  At (16) 
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Under the transformation (12) suppose that the change of q~ is given by 
A~b, = ~K~;  then one has 

6(a~ = ~ 6q~ + ~3dp~ 6p~ = e~F~ = F~ (17) 
c~q cOpi 

where 

F~ = K a  ~ - ---~- - ~ q ~  - ~p/~i  ~ (18) 

If  the simultaneous variation 6q / determined by the transformation (12) 
satisfies the same conditions as the virtual displacement imposed by con- 
straints (4) (i.e., a nonholonomic system of Chetaev type), then 

aG~ 
c~4~ 6q i=  0 (19) 

Using a set of Lagrange multipliers 2'(t) and #a(t), combining the expres- 
sions (15), (17), and (19), one obtains 

Op+ Ira 6pi -- i + -  '~ -- c3q i 'b  tl W -~qi) q 

d i 
+ dt (pi6q + Lp At -- 6f~) = 2~F~ (20) 

Along the trajectory of motion of a singular constrained system, from (11) 
one obtains 

d ,o 
-dl [Pi(~" - (t i'c'r) q- Lp "ca - ~a] = j aF~ a (21) 

Therefore, we have the following GFNT in the canonical formalism for a 
singular constrained system: If, under the transformation (12), the canoni- 
cal Lagrangian Lp is invariant up to an exact differential term and the 
generators "c a, ~;~, and ~/7 of the transformation (12) satisfy 

~ ( ~ - q ' r  ~)=0 ( s = l , 2  M, rr=l ,2 r) (22) 

(~'~ - 4i~ ~) + ~ ( ~  - A S )  = o (a -- 1, 2 . . . .  , R, 

then the expression 

p/r _ Hv~ _ ~ = const 

o r = l , 2  . . . . .  r) 

(23) 

(a = 1, 2 . . . . .  r) (24) 
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represents the constants of the motion. This theorem is a generalization of  
the previous result (Li and Li, 1991). 

3. THE INVERSE TH EO REM OF THE GFNT 

We now find the conditions under which the inversion of the GFNT is 
possible in the canonical formalism for a singular constrained system. 
Suppose that we know r independent conservative quantities in phase space 
for a singular nonholonomic system which is given by 

D~(t, q, p) = C ~ = const (a = 1, 2 , . . . ,  r) (25) 

Using these conservative quantities, we are going to find the corresponding 
transformation (12) under which the variation of the canonical action (13) 
is given by (14). For a singular nonholonomic system, any dynamical 
trajectory of the motion satisfying equations (11), it follows that 

(0' OHop~ #" Oq~''~-~ ._-~p~ ]rli - , + ffq~+__OH paOdP"-2sOGs']~i'~= Oil'J (26) 

where e,f/7 = 6p,, e,~;~ = 6q'. Combining expression (26) and the derivative 
with respect to time t of expression (25), one has 

OD '~ ODe., OD '~ " ( OH l a ~ )  
Ot +--~qi q +--~pi Pi -b 0 i Op i 07 

- -  (Pi OH + -ff-qT + #" OO-~ - M OG f ~ "  = O (27) 
oO'J 

These relations are to be fulfilled for any dynamical trajectory of the 
motion; this leads to terms containing the time derivatives of p, canceling 
each other; thus 

~'~ = OD"/Op, (28) 

Now let 

Hence 

D~=pi~i~+LpZ~-~ ~ (29) 

: = L ; ' ( D  + n (30) 

From (28) and (30) one can find ~'~. 
In addition, the quantities ~/7 appear in the transformation laws for the 

generalized momenta in (12); at first it may appear that these quantities 
may be arbitrary, but if we recall the definition of canonical momenta, 
generalized momenta are known functions of time, generalized coordinates, 
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and generalized velocities, 

/5~ = p; (i, 0, q) and q = 0 + A0 

from (12) one has (Djukic, 1974) 

/tO, dO' dq' (dr '<" .idz <') 
- dr dt - ~ "  \ - - d t -  - q 

(31) 

Hence the transformed generalized momenta/~i are completely determined 
in terms of ~ ,  r % and untransformed canonical variables; the correspond- 
ing quantities ~/7 in transformed generalized momenta can be obtained as 
functions of z~, ~i~, and untransformed canonical variables. Therefore, we 
have found the generators T ~ ~'~, ~/7 of the transformation (12). If these 
generators satisfy the conditions 

~c~ (~;~ _ q ; < )  = 0 (32) 

~qS,~q,. (~i~ _ q,~) + ~ (q[ - P;~) = 0 (33) 

then the transformation (12) is generated by these generators z ", ~% and 
q7 under which the variation of the canonical action (13) satisfies (14). In 
fact, substituting the generators z ", ~;~, t/7 and (32) and (33) into the 
expression (27), one gets 

d ( . ,  ~s-S'~ <, 1.  os-sk-;<, fi,, 
a-7(s'X '<' + L,,, <') + t q  - is , ,  = (34) 

Multiplying expression (34) by e:, taking the summation for dummy upper 
and lower indices a, and integrating the result, one obtains expression (14). 
Therefore, we obtain the inverse theorem of the GFNT in the canonical 
formalism for a singular constrained system: To any r-independent con- 
stant of motion D'(t, q, p) for a system with a singular Lagrangian and 
constraints (4) there corresponds an infinitesimal transformation (12) 
generated by the above generators r ", ~", and qT, and so long as the 
conditions (32) and (33) are satisfied, this transformation induces a varia- 
tion (14) on the canonical action of the system. 

4. POINCARI~-CARTAN INTEGRAL INVARIANT FOR SINGULAR 
CONSTRAINED SYSTEM 

Let us consider a dynamical system with constraints (4) described by 
a singular Lagrangian L(t, q, 0). This system also has canonical constraints 
(2). Suppose that the equations of motion of this singular constrained 
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system are given by (11). Now let us consider the transformation 

f t --* t-= t + At(~) 
qi(t) ~ ~i(t-) = qi(t) + Aq'(t, ~) (35) 

pi(t) ~P,(t)  = pi(t) + Ap,(t, ~) 

where ~ is a parameter which satisfies 

q~(t, O) = qi(t), pc(t, O) = p~(t) (36) 

Under the transformation (35) the variation of the canonical action (13) is 
given by 

AIp= I'p(~) A~ 
t2 OH 

+-~qi)6q + ~ ( p i A q i - H  At)]d,  (37) 

where 6p~ and 6q e are simultaneous variations of p; and q~ which are given 
by (16). 

Let the simultaneous variations 6q i determined by the transformation 
(35) satisfy the virtual displacement conditions (19) imposed by constraints 
(4), and suppose that the simultaneous variations 6pi and 6q ~ satisfy the 
condition: 

Ock.dq ~ 6q~ + ~ 6p, = 0 (38) 

Introducing the Lagrange multipliers 2s(t) and #"(t) and combining with 
the expressions (19), (37), and (38), one gets 

AIp=Ip(~)A~= O~ OH I ~ 
, - - 

- i +  +#~ - 2  13q + [ p i A q i - H A t ]  dt 

(39) 

Along the dynamical trajectory of motion of the singular constrained 
system, using equations (11), one obtains 

Alp = I'p(g) A~ = [Pi Aq' - H At]~ (40) 

Let C1 be any simple closed curve encircling the tube of dynamical 
trajectories in extended phase space, i.e., through any point on C1 there is 
a dynamical trajectory of the motion. The equation of this closed curve C~ 
is given by 

t = to)(oO, qi = q~l ) (~) ,  Pi = p~O (~) (41) 
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where ~ = 0 and ~ = l is the same point on C1. The dynamical trajectories 
through every point on C1 form a tube of trajectories 

q i =  qi(t ' ~X), Pi =pi(t, ~) (42) 

where qi(t,O)= qi(t, l),p~(t, 0)=pi( t ,  l). Choose another closed curve C2 
on this tube of trajectories such that it intersects the generatrix of the tube 
once. Suppose the equation of C2 is given by 

t = t~2~(~), q i= q~2)(~), Pi =p~2)(~) (43) 

where ~ = 0 and ~ = l is also the same point on C2. Along the curves C1 
and C2 take the integral of the expression (40) with respect to c~, which 
gives the same result, respectively, i.e, 

J = .~c [p; A q i -  H At] =/nv (44) 

where C is any simple closed curve encircling the tube of dynamical 
trajectories. This integral (44) calculated along an arbitrary closed contour 
lying on the hypersurface of extended phase space (t, qi, pi), defined by 
constraint equations (2) and (4), is invariant under an arbitrary displace- 
ment (with deformation) of the contour along any tube of dynamical 
trajectories. J is called the Poincar~-Cartan integral invariant for the 
singular nonholonomic constrained system. 

Conversely, let us suppose we have a singular constrained system, with 
constraint equations given by (2) and (4), whose dynamical trajectories 
satisfy a system of differential equations 

dli=fi(t,q,p,)~,12), b~=g~(t,q,p, 2,#) ( i=  1,2 . . . . .  n) (45) 

wheref  i, g~ depend on some arbitrary functions. Then we can show that the 
sufficient condition for equations (45) to be the canonical equation (11) of 
a singular constrained system is that the Poincarr-Cartan integral (44) be 
invariant. 

In fact, following Gantmacher (1979), we introduce an auxiliary 
variable, using the Poincar~-Cartan integral invariant (44), and obtain 
(Dominici and Gomis, 1980) 

( ~H'~ ( "~ { OH'~A t - - - -  - - -  - ~ g i + - ~ q i )  Aqi+~- - f i+-~Pi ' ]Api+~- - - - -~+  OtJ = 0  (46) 

The variations Aq; and Ap~ are not independent; one has 

OGs 
~3q" (Aq"-  q~ At) = 0 (47) 

Oq~ (Aq~- q; At) + (APi - b~ At) = 0 (48) 
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4,~ = 

&b. 
& 

& 

Introducing a set of Lagrange multipliers 2s(t) and f:(t), combining the 
expressions (46)-(48), one obtains 

(t i = f i=  aH t~p, + #" ~ (49) 

~n  , dq~, 2s t?Gs (50) 

Equations (49) and (50) are just the canonical equations of the singular 
nonholonomic system. 

There is some confusion in the literature (Benavent and Gomis, 1979; 
Dominici and Gomis, 1980) regarding the total variation and simultaneous 
variation: It was required that the constraint conditions (2) are invariant 
under the total variation of canonical variables q; and p~, and in that case 
there are no constraint conditions (4). Thus, one has 

~ i  Aqi + t~q~" Api=0 (52) 
dq t~pi 

According to the consistency condition of consl~raint, 

- -- + --Sqi \ c3p + --~Pi J + -~pi ---ff-qT-- c3q',] 

+ {4,., H + ~,",~. } = 0 (53) 

where { . , .  } denote the Poisson bracket. From (16), (35), (52), and (53), 
one can obtain 

[Pi Aq i -  H At] 2 = ft2 2" d~b, At dt (54) 
j , ,  at 

In general, from (54) one cannot obtain the Poincarr-Cartan integral 
invariant (44), unless ~b, does not depend on time explicitly or At equals 
zero. Thus, the condition (38) is necessary for deriving the invariant (44). 

In addition, if the condition (52) holds, from (46) and (52) one can 
conclude that 

dH aH 
- (55) 

dt dt 
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This equality (55) holds for a regular Lagrangian (Gantmacher, 1979), but 
for the singular Lagrangian in that case (Benavent and Gomis, 1979; 
Dominici and Gomis, 1980), from (53) and 

dH OH OH 

a t  = 0--; + { H,  + Itbg b } = T ;  + Itb{ } 
(56) 

one can obtain 

a n  0H 00o 
dt - Ot + l  t" O----t (57) 

Hence, the equality (55) does not hold for a singular Lagrangian unless ~b. 
does not depend on time t explicitly. Therefore, in general one must be 
careful to distinguish the total variation and simultaneous variation of 
canonical variables and use (38) instead of (52) to derive the Poincar6- 
Cartan integral invariant (44). 

5. AN E X A M P L E  

Now we present an example for the inverse theorem of the GFNT. Let 
us consider the mechanical system in Euclidean space with coordinates 
x(t), y(t), z(t) whose Lagrangian is given by (Galv~o and Boechat, 1990) 

L = 1(2~2 ..]_ ~2)  ..~ l z 2 ( x 2  _]_ 22 )  _ z(xy - -  y .~)  - - ~ ( x l  2 ..~ y 2 )  ( 5 8 )  

Suppose that this system is subject to a subsidiary nonlinear nonholonomic 
constraint which is given by 

G = a 2~2 _ :if _ f 2 = 0 (a = const) (59) 

Because the constraint (59) is a homogeneous function with respect to 
and )~ and 3L/Ot = 0, it is easy to find that the energy of this nonholonomic 
system is conservative (Li, 1988). 

It is clear that this Lagrangian (58) is singular since z is not a 
dynamical variable. The canonical moments are given by 

Px =5c + zy, py = j~ - zx,  Pz = 0  (60) 

Hence 

c~ =Pz = 0  

is a constraint. The canonical Hamiltonian is given by 

1 2 1 2 H = ~(Px + P~) + z(Xpy - yp~) + i ( x  + y2) 

(61) 

(62) 
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The generalized energy conservat ion  o f  this system implies tha t  

D( t, q, p) 1 2 = ~(Px +p2y) + z(xpy -- yp~) + �89 2 + y2) = const  

F r o m  expression (28), one obtains  

~ l = ~ x = p ~ - - z y ,  ~ 2 = ~ y = p y  + zx ,  

and using relat ion (30), one finds 

z L p l r  1t_2 = t - - ~ , t , ~ + p 2 ) - - y z p ~ + x z p y - f ~ ]  

Let us choose 

(63) 

~-3 = ~-z = 0 (64) 

(65) 

1 2 2 = - ~ ( P x  + P y )  - ( y zpx  - XZpy) (66) 

Then z = 0, and consequent ly  one finds the genera tors  z = 0, 41 = P x  - z y ,  

42 =P.y + zx, and 43 = 0. Using expression (60), one obtains  r/1 = ~1 + Y42, 

/12 ~" 42 -- Z41, and r/3 = 0. 
I t  is easy to verify that  41 = P x  - z y  = Yc, 42 =Py  + z x  = ~ ,  and 43 = 0, 

and r/,, r/2 , r/3 satisfy condit ions (32) and (33) for  constra ints  (59) and  (61), 
respectively. Finally, we find the following infinitesimal t r ans fo rmat ion  in 
connect ion with the inverse theorem o f  the G F N T  in canonical  form: 

t-= t, /~x = Px + e(~, + Y42) 

x = x - ] - ~ l ,  f i y = p y + e ( ~ 2 - z 4 1 )  

fi = y + e42. P~ = Pz 
(67) 
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